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Application: Sampling  and Interpolation 
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Sampling and Inte rpola t ion Often, we want to be  able  to convert between continuous-time and 

discrete-time representations  of a  s ignal. 

This  is  accomplished through processes  known as  sampling and 

interpolation. 

The sampling process, which is  performed by an ideal continuous-time 

to discrete-time (C/D) conver ter  shown below, transforms a  continuous-

time s ignal x to a  discrete-time s ignal (i.e., sequence) y. 

C/D 
(with sampling 

period T  )  

x(t) y(n) 

The interpolation process, which is  performed by an ideal discrete-time 

to continuous-time (D/C) conver ter  shown below, transforms a  discrete-

time s ignal y to a  continuous-time s ignal x̂.  

D/C 
(with sampling 

period T  )  

y(n) x̂(t) 

Note  that, unless  very special conditions  are  met, the  sampling process  

loses  information (i.e., is  not invertible ).  
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Periodic Sampling 

Origina l S igna l 

Although sampling can be  performed in many different ways, the  most 

commonly used scheme is  per iodic sampling. 

With this  scheme, a  sequence  y of samples  is  obtained from a  

continuous-time s ignal x according to the  relation 
 

y(n) =  x(nT ) for a ll integer n, 
 

where  T is  a  positive  real constant. 

As  a  matter of terminology, we refer to T as  the  sampling per iod, and 

ωs =  2π/ T as  the  (angular) sampling frequency. 

An example  of periodic sampling is  shown below, where  the  original 

continuous-time s ignal x has  been sampled with sampling period T =  10, 

yie lding the  sequence  y. 
x(t) y(n) 
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Sample d S ig na l     

0 
n 

2 

3 

4 

1 
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Periodic Sampling (Continued) 
The sampling process  is  not generally invertible . 
 

In the  absence  of any constraints, a  continuous-time s ignal cannot usually 

be  uniquely determined from a  sequence  of its  equally-spaced samples . 
 

Consider, for example, the  continuous-time s ignals  x1  and x2  given by 
 
 

x1(t) =  0 and x2(t) =  sin(2πt ).  
 
 

If we sample  each of these  s ignals  with the  sampling period T =  1, we 

obtain the  respective  sequences  
 
 

y1(n) =  x1(nT ) =  x1(n) =  0 and 
 

y2(n) =  x2(nT ) =  sin(2πn) =  0.  
 

Thus, y1(n) =  y2(n) for a ll n, a lthough x1(t) =j x2(t) for a ll noninteger t . 

Fortunately, under certa in circumstances, a  continuous-time s ignal can be  

recovered exactly from its  samples . 
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Model of Sampling An impulse train is  a  s ignal of the  form v(t ) = ∑∞  
k =−∞  akδ(t − kT ), where  

ak  and T are  real constants  (i.e., v(t) consis ts  of weighted impulses  

spaced apart by T  ).  

For the  purposes  of analys is, sampling with sampling period T and 

frequency ωs =  2π  can be  modelled as  shown below. T 

× 
x(t) y(n) s(t) 

idea l C/D converte r 

convert from 
impulse  tra in 
to sequence 

p(t ) =  
∞ 

∑ 
k =−∞  

δ(t − kT  )  

The sampling of a  continuous-time s ignal x to produce  a  sequence  y 
consis ts  of the  following two s teps  (in order ):  

1 Multiply the  s igna l x to be  sampled by a  pe riodic impulse  tra in p, yie lding 

the  impulse  tra in s. 

Conve rt the  impulse  tra in s to a  sequence  y, by forming a  sequence  from 

the  we ights  of success ive  impulses  in s. 

2 
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Model of Sampling: Various  S igna ls  

0 T 2T 3T 
 

Input S igna l (Continuous-Time ) 
 

 

s(t) 
 

 
x(T  )  
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t 

x(t) 
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1 

0 
t 
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Periodic Impulse  Tra in 

1 1 1 1 

p(t) 

0 T 2T 3T 
 

Impulse -Sampled S igna l 

(Continuous-Time) 

t 

2 

3 

1 

x( 0)  

x(2T  )  
x(3T  )  

n 
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Output Sequence (Discrete-Time) 

y(n) 

2 
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4 

1 

x(T  )  

x(3T  )  x(2T  )  

x( 0)  
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Model of Sampling: Characte riza t ion 

× 
x(t) y(n) s(t) 

idea l C/D converte r 

convert from 
impulse  tra in 
to sequence 

p(t) =  
∞ 

∑ 
k =−∞  

δ(t − kT  )  

In the  time domain, the  impulse-sampled s ignal s is  given by 
 

∞ 

s(t) =  x(t) p(t) where  p(t ) =  ∑ 
k =−∞  

 

In the  Fourier domain, the  preceding equation becomes 
 

∞ 

δ(t − kT  ).  

S(ω) =  ωs 
2π ∑ 

k =−∞  
 

Thus, the  spectrum of the  impulse-sampled s ignal s is  a  scaled sum of an 

infinite  number of shifted copies of the  spectrum of the  original s ignal x. 

X (ω − kωs ).  
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Model of Sampling: Alias ing 
Consider frequency spectrum S of the  impulse-sampled s ignal s given by 

 

∞ 

S(ω) =  ωs 
2π ∑ 

k= −∞ 
 

The function S is  a  scaled sum of an infinite  number of shifted copies of X . 

Two dis tinct behaviors  can result in this  summation, depending on ωs  and the  

bandwidth of x. 

In particular, the  nonzero portions  of the  different shifted copies  of X can 

either: 

X (ω − kωs ).  

1 overlap; or 

not ove rlap. 2 

In the  case  where  overlap occurs, the  various  shifted copies  of X add 

together in such a  way that the  original shape  of X is  los t. This  

phenomenon is  known as  aliasing. 
 

When alias ing occurs, the  original s ignal x cannot be  recovered from its  

samples  in y. 
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Model of Sampling: Alias ing (Continued) 

−ωm 0 ωm 
ω 

X (ω) 
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Model of Inte rpola t ion For the  purposes  of analys is, interpolation can be  modelled as  shown 

below. 
idea l D/C converte r 

convert from 
sequence to 
impulse  tra in 

y(n) x̂(t) s(t) 
H(ω) 

H(ω) =  T rect 
  T ω 

  
2π 

The inverse  Fourier transform h of H is  h(t) =  sinc(πt/ T  ).  

The reconstruction of a  continuous-time s ignal x from its  sequence  y of 

samples  (i.e., bandlimited interpolation) consis ts  of the  following two s teps  

(in order ):  

1 Convert the  sequence y to the  impulse  tra in s, by us ing the  e lements  in the  

sequence a s  the  we ights  of success ive  impulses  in the  impulse  tra in. Apply a  

lowpass  filte r to s to produce  x̂.  2 

The lowpass  filter is  used to e liminate  the  extra  copies  of the  original s ignal’s  

spectrum present in the  spectrum of the  impulse-sampled s ignal s. 
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Model of Inte rpola t ion: Characte riza t ion 

In more  detail, the  reconstruction process  proceeds  as  follows. 

Firs t, we convert the  sequence  y to the  impulse  tra in s to obtain 
 

∞ 

s(t) =  ∑ 
n= −∞ 

 

Then, we filter the  resulting s ignal s with the  lowpass  filter having impulse  

response  h, yie lding 
 

∞ 

y(n)δ(t − nT ). 

x̂(t) =  ∑ 
n =−∞  

y(n) sinc( π (t − nT  )).  
T 
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Sampling Theorem Sampling Theorem. Let x be a  s ignal with Fourier transform X , and 

suppose  that |X (ω)| =  0 for a ll ω satis fying |ω| >  ωM  (i.e., x is  bandlimited 

to frequencies  [−ωM , ωM ]). Then, x is  uniquely determined by its  samples  

y(n) =  x(nT ) for a ll integer n, if 
 

 

ωs >  2ωM , 
 

where  ωs =  2π/ T . The  preceding inequality is  known as  the  Nyquist 

condition. If this  condition is  satis fied, we have  that 
 

∞ 

x(t) =  ∑ 
n =−∞  

 

 

or equivalently (i.e., rewritten in terms of ωs  ins tead of T  ),  
 

∞ 

y(n) sinc( π (t − nT )), 
T 

x(t) =  ∑ 
n =−∞  

y(n) sinc( ωs t − πn ).  
2 

We call ωs/ 2 the  Nyquist frequency and 2ωM  the  Nyquist rate.    
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Part 6 
 

 
 
 

Laplace  Trans form (LT) 
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Motiva t ion Behind the  Laplace  Trans form 

Another important mathematical tool in the  s tudy of s ignals  and sys tems is  

known as  the  Laplace  transform. 
 

The Laplace  transform can be  viewed as  a  generalization of the Fourier 

transform. 
 

Due to its  more  general nature, the  Laplace  transform has  a  number of 

advantages over the  Fourier transform. 
 

Firs t, the  Laplace  transform representation exis ts  for some s ignals  that do 

not have  Fourier transform representations.  So, we can handle  a  larger 

class of signals with the  Laplace  transform. 
 

Second, s ince  the  Laplace  transform is  a  more  general tool, it can provide  

additional insights beyond those  facilita ted by the  Fourier transform. 
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Motiva t ion Behind the  Laplace  Trans form (Continued) 

Earlier, we saw that complex exponentia ls  are  e igenfunctions  of LTI 

sys tems. 
 

In particular, for a  LTI sys tem H with impulse  response  h, we have  that 

H { est }  =  H(s)est where  H(s) =  
{  ∞ 

−∞ 
h(t)e−st dt. 

Previously, we referred to H as  the  sys tem function. 

As it turns  out, H is  the  Laplace  transform of h. 
 

Since  the  Laplace  transform has  already appeared earlier in the  context of 

LTI sys tems, it is  clearly a  useful tool. 
 

Furthermore, as  we will see, the  Laplace  transform has  many additional 

uses. 
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