Section 5.10

Application: Sampling and Interpolation
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@ Often, we want to be able to converibetween continuous-time and
discrete-time representations of a signal.
@ This is accomplished through processes known as sa/mp//ingand

/nterpolation.
@ The sampling process, which is performed by an ideal continuous-time

to discrete-time (C/D) converter shown below, transforms a continuous-
time signal xto a discrete-time signal (i.e., sequence) V.

X1 C/D A
—— )with sampling —>——
period 7(

@ The /nterpolation process, which is performed by an ideal discrete-time
to continuous-time (D/C) converter shown below, transforms a discrete-
time signal J/to a continuous-time signal X

Un) D/C XK
——— )with sampling ——>——
period 7(

@ Note that, unless very special conditions are met, the sampling process
loses information (i.e., is n0f invertible(



@ Although sampling can be performed in many different ways, the most
commonly used scheme is :

@ With this scheme, a sequence yofsamples is obtained from a
continuous-time signal xaccording to the relation

W) = XnT) forallinteger rx
where 7is a positive real constant.
@ As a matter of terminology, we referto 7 as the , and
wWs= 217 7 as the (angular)
@ An example of periodic sampling is shown below, Where the original
continuous-time signal xXhas been sampled with sarmp/ing period T = 10,
yielding the sequence )
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@ The sampling process is not generally invertible.

@ In the absence of any constraints, a continuous-time signal cannot usually
be uniquely determined from a sequence ofits equally-spaced samples.

@ Consider, for example, the continuous-time signals X3 and X given by
x1() =0 and x(f) = sin(2t.(

@ If we sample each of these signals with the sampling period 7= 1, we
obtain the respective sequences
yi(n) = x(n7) = x(n =0 and
y(n) = x(n7) = sin(2rin) = .0
@ Thus, Ji(n) = )o(n) for all n although x1(2) F x(?) for all noninteger £.

@ Fortunately, under certain circumstances, a continuous-time signal can be
recovered exactly from its samples.
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@ An is a signal of the form U£°Y = (o= AO(f—KT), where
axand T are real constants (i.e., ) consists of weighted impulses

spaced apart by 7.(
@ For the purposes of analysis, sampling with sampling period 7 and
frequency ws= <Tcan be modelled as shown below.

T
ideal C/D converter
I ____________________________
0 I
| dE= (S (kT |
| = |
X K | /t S convert from LU
———(X)— impulse train —
| to sequence :
i |
L |

@ The sampling of a continuous-time signal xto produce a sequence y

consists of the following two steps (in order:(
@ Multiply the signal xto be sampled by a periodic impulse train g, yielding

the impulse train S
@ Convertthe impulse train Sto a sequence ), by forming a sequence from
the weights ofsuccessive impulses in §
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ideal C/D converter

I
| oD = S(t—kT( |
| K= |

X 1) | /t S convert from L AN
—L——(X)— impulse train ——

| to sequence :
i |
' |

@ In the time domain, the impulse-sampled signal Sis given by
L) = ) (f) where A= ( kg_ O(t—KT(
@ In the Fourier domain, the preceding equation becomes
W= % 5 Xk
Pr==

@ Thus, the spectrum of the impulse-sampled signal Sis a scaled sum ofan
infinite number of s//ffed copiesof the spectrum of the original signal x
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@ Consider frequency spectrum Sof the impulse-sampled signal sgiven by

=% T Xk
Pl

@ The function Sis a scaled sum of an infinite number of s//ffed copiesof X.
@ Two distinct behaviors can result in this summation, depending on wsand the
bandwidth of X

@ In particular, the nonzero portions of the different shifted copies of X can
either:
Q overlap; or
Q@ notoverlap.
@ In the case where overlap occurs, the various shifted copies of Xadd
together in such a way that the original shape of X'is lost. This
phenomenon is known as

@ When aliasing occurs, the original signal xcannot be recovered from its
samples in y
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For the purposes of analysis, interpolation can be modelled as shown

below,
ideal D/C converter

| |

| |
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- Tt
: H(w) = Trect 5L

The inverse Fourier transform Aof His A ) = sinc(tit/ 7.(

The reconstruction of a continuous-time signal xXfrom its sequence yof
samples (i.e., bandlimited interpolation) consists of the following two steps
(in order:(
@ Convertthe sequence yto the impulse train § by using the elements in the
sequence as the weights ofsuccessive impulses in the impulse train. Apply a
@ lowpass filter to Sto produce X

The lowpass filter is used to eliminate the extra copies of the originalsignals
spectrum present in the spectrum of the impulse-sampled signal S
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@ In more detalil, the reconstruction process proceeds as follows.

@ First, we convert the sequence yto the impulse train Sto obtain
(0= > ANd(L—nT).
/= —o0

@ Then, we filter the resulting signal swith the lowpass filter having impulse
response /3 yielding

0= S U snc(L(t—nT(
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@ Sampling Theorem. Let xbe a signal with Fourier transform X, and
suppose that | X(w)|= O for all wsatisfying |w| > wu (i.e., xis bandlimited
to frequencies [—was, Wus]). Then, Xxis uniquely determined by its samples
W) = X(nT) for all integer 7, if

Ws> 2Wp,

where ws= 217 7. The preceding inequality is known as the
. If this condition is satisfied, we have that

— = " 1L _
()= 5 HAsne(R(t—nD)
or equivalently (i.e., rewritten in terms of wsinstead of 7¢(

X0 = iy(n)sinc(%t—rm.(

@ We call wd 2 the and 2wy the



Part 6

Laplace Transform (LT(
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@ Another important mathematical tool in the study of signals and systems is
known as the Laplace transform.

@ The Laplace transform can be viewed as a generalization of the Fourier
transform.

@ Due to its more general nature, the Laplace transform has a number of
aavantagesover the Fourier transform.

@ First, the Laplace transform representation exists for some signals that do
not have Fourier transform representations. So, we can handle a /arger
class of signalswith the Laplace transform.

@ Second, since the Laplace transform is a more general tool, it can provide
adaitional insightsbeyond those facilitated by the Fourier transform.



@ Earlier, we saw that complex exponentials are eigenfunctions of LTI
systems.

@ In particular, fora LTI system A with impulse response /A we have that

{ «
H{e&%} = H(9e where H(9 = ) HHedat.

@ Previously, we referred to A as the system function.
@ As it turns out, H'is the Laplace transform of A

@ Since the Laplace transform has already appeared earlier in the context of
LTI systems, it is clearly a useful tool.

@ Furthermore, as we will see, the Laplace transform has many additional
uses.
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